Chipsju

Project Newsletter I

vivaproject.eu

About VIVA

VIVA introduces a **compact**, **lightweight** (<40g), and **power-efficient** eye-tracking solution by integrating Laser Feedback Interferometry (LFI) with meta-optics. Unlike traditional camera-based systems, this **camera-free approach** delivers **high-accuracy tracking** (~1 kHz sampling rate) while preserving user privacy.

By overcoming the limitations of **video-based** and **electro-oculography (EOG)** systems, VIVA sets a new benchmark for **ergonomic**, **all-day wearable eyetracking**. The technology supports both **industrial** and **consumer applications**, while reinforcing **Europe's leadership** in **microelectronics** and **photonics**.

CAM design glasses intended as the prototype integration carrier for VIVA.

Federal Ministry of Education and Research

SPONSORED BY THE

Laying the foundation for our project

On July 1–2, 2024, the **first face-to-face** meeting of the VIVA project took place at **Robert Bosch GmbH in Renningen**, Germany. The meeting marked the official kick-off of this initiative.

On February 11–12, 2025, VIVA partners met in Lund for the second **General Assembly**, hosted by Sigma Connectivity. The meeting marked a key step forward in technical progress and team collaboration toward nextgeneration eye-tracking systems.

Advancing our collaboration and next steps!

Highlights from Recent Conferences

Our partners had the opportunity to participate in two major international events:

International Laser Safety Conference (ILSC) 2025 March 3–6, Orlando

2/5

European Robotics Forum (ERF) 2025 March 25–27, Stuttgart

Federal Ministry

SPONSORED BY THE

Federal Ministry of Education and Research

Nanometric 3D representation showing the sensor mounted on a Euro cent coin, selected to clearly illustrate the actual scale of the sensor.

The VIVA consortium is pleased to announce the successful completion of the **initial package samples**, which seamlessly **integrate Trumpf's VCSEL with an integrated photodiode and NILT's meta optical element within Bosch's optical LGA platform**. The current size of the sensor is already highly suitable for frame integration. However, the consortium is committed to **further innovation**, with upcoming iterations aimed at achieving substantial reductions in the sensor's footprint.

Nanometric3D scale visualization of the sensor placed over the European flag motif.

3/5

SPONSORED BY THE

Federal Ministry of Education and Research

The **simulation tool** developed as part of the VIVA project provides **comprehensive analysis of eye movements** for precise eye tracking.

By calculating **intensities and optical path lengths for various sensor positions**, the tool enables the derivation of eye movement velocity and efficient evaluation of different eye-tracking algorithms.

One advantage is the flexible simulation of different scattering and absorption behaviors of surfaces such as **iris, sclera, and retina**.

The tool allows precise determination of the **relationship between sensor positioning and gaze accuracy**. This enables identifying the optimal sensor placement to improve eye-tracking accuracy and develop innovative algorithms. The tool significantly **accelerates the development and optimization of eyetracking systems**.

SPONSORED BY THE

Federal Ministry of Education and Research

Learn more about us!

SPONSORED BY THE

Federal Ministry of Education and Research

